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Announcement

HW6 mini-project should be well underway.

If you have not started, you are behind.

Final time announced, check the official calendar.

Final’s scope is every lecture after Midterm.
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Daphne Ippolito and Chenyan Xiong

3 CMU 11-667 Fall 2024

Long Context Language Models

Large Language Models: Methods and Applications
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Learning Objectives

Learn the scenarios where long-context is explored

Learn the technologies that pretrain long-context models

Understand the benefits and limitations of current long-context models
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Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving
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Long-Context Ability of LLMs

One of the main “competing” metric of industry LLMs in the past year [1]

[1] https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/ 



Please download and install the 
Slido app on all computers you use

Why we need long context in 
LLMs?

ⓘ Start presenting to display the poll results on this slide.
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Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough
● Chatbot: long conversation history
● RAG: lots of retrieved documents
● Code: large repository
● Fancy Prompts: can be very long

[4] Hsieh et al. 2024. RULER: What’s the Real Context Size of Your Long-Context Language Models? 
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Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough
● Chatbot: long conversation history
● RAG: lots of retrieved documents
● Code: large repository
● Fancy Prompts: can be very long

Ideally, a lot of imagination towards AGI
● Short term memory
● Long term reasoning across multiple text pieces
● Global understanding
● Bring the AGI power of LLMs to all the above
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Long-context Demo of Gemini

https://www.youtube.com/watch?v=LHKL_210CcU&t=107s&ab_channel=Google
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Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving
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How LLMs Use Long Context?

Multi-document QA Task: Answer the question from one relevant document places in the context

[2] Liu et al. 2024. Lost in the Middle: How Language Models Use Long Contexts. 

Probing QA Ability with Multiple Document Contexts [2]
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How LLMs Use Long Context?

QA Accuracy with Relevant Docs at Different Positions in Context [2]

[2] Liu et al. 2024. Lost in the Middle: How Language Models Use Long Contexts. 
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How LLMs Use Long Context?

QA Accuracy with Relevant Docs at Different Positions in Context [2]

[2] Liu et al. 2024. Lost in the Middle: How Language Models Use Long Contexts. 
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How LLMs Use Long Context?

QA Accuracy with Relevant Docs at Different Positions in Context [2]

More irrelevant contexts distract LLMs
Lost-in-the-middle: worst at finding relevant information in the middle

[2] Liu et al. 2024. Lost in the Middle: How Language Models Use Long Contexts. 



16 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Needle in the Hack Test

Placing a “needle” into the context, and test if LLM can retrieve it.
● Needle: a random fact that unlikely to be part of the LLM’s parametric knowledge

○ E.g. "The 5 best things to do in San Francisco are: 1) Go to Dolores Park. 2) Eat at Tony's 
Pizza Napoletana. 3) Visit Alcatraz. 4) Hike up Twin Peaks. 5) Bike across the Golden Gate 
Bridge"

● Context: other unrelated documents
● Test: if the LLM can extract the answer perfectly

○ E.g. for question “What are the 5 best things to do in San Franscisco?”

[3] https://github.com/gkamradt/LLMTest_NeedleInAHaystack 
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Pressure Testing GPT-4 128K via "Needle In A HayStack"
Asking GPT-4 To Do Fact Retrieval Across Context Lengths & Document Depth
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Goal: Test GPT-4 Ability To Retrieve Information From Large Context Windows

GPT-4 recall ability
started to degrade at large 

context lengths when the 
placed-fact was between 
10%-50% document depth

Needle in the Hack Test

[3] https://github.com/gkamradt/LLMTest_NeedleInAHaystack 
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Pressure Testing Claude-2.1 200K via "Needle In A HayStack"
Asking Claude 2.1 To Do Fact Retrieval Across Context Lengths & Document Depth

Context Length (# Tokens)
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Claude 2.1 200K retrieval 
accuracy progressively 
decreased as context 

lengths increased.

Needle in the Hack Test

[3] https://github.com/gkamradt/LLMTest_NeedleInAHaystack 
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Needle in the Hack Test

Lots of varieties of synthetic tasks [4]:

[4] Hsieh et al. 2024. RULER: What’s the Real Context Size of Your Long-Context Language Models? 
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Needle in the Hack Test

Lots of varieties of synthetic tasks [4]:

[4] Hsieh et al. 2024. RULER: What’s the Real Context Size of Your Long-Context Language Models? 
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Needle in the Hack Test

Lots of varieties of synthetic tasks [4]:

[4] Hsieh et al. 2024. RULER: What’s the Real Context Size of Your Long-Context Language Models? 
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Needle in the Hack Test

What is the extractive ability of LLMs on long inputs?

[4] Hsieh et al. 2024. RULER: What’s the Real Context Size of Your Long-Context Language Models? 
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Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough
● Chatbot: long conversation history
● RAG: lots of retrieved documents
● Code: large repository
● Fancy Prompts: can be very long

Ideally, a lot of imagination towards AGI
● Short term memory
● Long term reasoning across multiple text pieces
● Global understanding
● Bring the AGI power of LLMs to all the above

[4] Hsieh et al. 2024. RULER: What’s the Real Context Size of Your Long-Context Language Models? 



Please download and install the 
Slido app on all computers you use

Can Needle In the Hack 
evaluation reflect LLM's long 
context ability

ⓘ Start presenting to display the poll results on this slide.
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Needle in the Hack Test

Post training on longer documents yield almost perfect extraction [5]

[5] Fu et al. 2024. Data Engineering for Scaling Language Models to 128K Context.
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Needle in the Hack Test

Easy to achieve 100 Needle in the Hach score (NIAH)
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Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving
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Real Task Performances

Can Long-context LLM replace task-specific models, like retriever?

[6] Lee et al. 2024. Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?

Specialized Models versus Long-Context LLMs [6]
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Real Task Performances

Can Long-context LLM replace task-specific models, like retriever?

[6] Lee et al. 2024. Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?

Specialized Models versus Long-Context LLMs [6]
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Real Task Performances

Can Long-context LLM replace task-specific models, like retriever?
● Similar ish performances
● Pros: Convenience
● Cons: Cost

[6] Lee et al. 2024. Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
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Real Task Performances

Can Long-context LLM replace task-specific models, like retriever?
● Similar ish performances
● Pros: Convenience
● Cons: Cost

Note, tested on distractor settings, much simpler than real retrieval

Also: 1M tokens are merely 500 documents

[6] Lee et al. 2024. Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?



Please download and install the 
Slido app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.
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Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving
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What are the gaps?

Positional encodings only capture shorter context
● Absolute and relative: never learned long context positions
● RoPE: strong decay over distance

Long-term Decay of RoPE [7]

[7] Sun et al. 2023. RoFormer: Enhanced transformer with Rotary Position Embedding  
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What are the gaps?

Format: Positional encodings only capture shorter context
● Absolute and relative: never learned long context positions
● RoPE: strong decay over distance

Distribution Shift: 
● Pretraining data are mainly “short” documents
● Empirically no attentions across document boundary

 

Distribution of Web Page Length in Tokens [8]

[8]  Overwijk et al. 2022. Clueweb22: 10 billion web documents with visual and semantic information. 
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What are the gaps?

Format: Positional encodings only capture shorter context
● Absolute and relative: never learned long context positions
● RoPE: strong decay over distance

Distribution Shift: 
● Pretraining data are mainly “short” documents
● Empirically no attentions across document boundary

Source of Intelligence: how do LLMs learn long-term dependency or global reasoning?
● Pretrained on next token prediction task solely
● How many next token prediction require information 128K tokens away?

 

[8]  Overwijk et al. 2022. Clueweb22: 10 billion web documents with visual and semantic information. 



37 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Position Encoding: Rotational Position Embedding

37

Incorporate the vector rotation in the attention mechanism (2d space) [7]:

Attention score by the dot prod of rotated vectors:

  

 

  

 

 

 

 

  

   

 

[7] Sun et al. 2023. RoFormer: Enhanced transformer with Rotary Position Embedding  
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Adapting Positional Encoding

Direct application leads to unseen range (also decayed long term dependency)

Adaptation of RoPE Encoding [9]

[9]  Chen et al. 2023. extending context window of large language models via positional interpolation 
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Adapting Positional Encoding

Interpolate the position into a smaller range (increasing RoPE frequency)

Adaptation of RoPE Encoding [9]

[9]  Chen et al. 2023. extending context window of large language models via positional interpolation 
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Adapting Positional Encoding

Interpolate the position into a smaller range (increasing RoPE frequency b)

Performance with Different RoPE frequency [10]

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 
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What are the gaps?

Format: Positional encodings only capture shorter context
● Absolute and relative: never learned long context positions
● RoPE: strong decay over distance

Distribution Shift: 
● Pretraining data are mainly “short” documents
● Empirically no attentions across document boundary

Source of Intelligence: how do LLMs learn long-term dependency or global reasoning?
● Pretrained on next token prediction task solely
● How many next token prediction require information 128K tokens away?

 

[8]  Overwijk et al. 2022. Clueweb22: 10 billion web documents with visual and semantic information. 
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Learning Long Context in Pretraining

Increase the fraction of longer text sequence in pretraining data
● Let model see more long sequences in pretraining
● Hope it naturally learns long context

○ LLMs do learn a lot of things from next token prediction

Where to get long pretraining sequences?
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Source of Pretraining Sequences

Concatenating documents together?

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 
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Source of Pretraining Sequences

Concatenating documents together?

Attention cross document boundary hurts significantly [10]
Can be mitigated but still often underperforms

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 



45 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Source of Pretraining Sequences

Create synthetic data for long context tasks

Synthetic Key-value Retrieval Task to Fine-tune Long-context LLMs [11]

[11]  Xiong et al. 2024. From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data 
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Source of Pretraining Sequences

Create synthetic data for long context tasks

Synthetic Key-value Retrieval Task to Fine-tune Long-context LLMs [11]

[11]  Xiong et al. 2024. From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data 

Hard to believe this leads to general long-context ability.
Also may lead to model collapse (next lecture).
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Source of Pretraining Sequences

Up sample long documents exist in organic data

Web Pages [8]

Long documents form 
the web. Rare, but exist

Code Repos [12] Other Long Documents

[12] Kocetkov et al. 2022. The Stack: 3 TB of permissively licensed source code. 
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Mixing Long Pretraining Data in Pretraining

Continue pretrain LLaMA on a mix of long texts [10]

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 

Long Data Mixture [10]
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Mixing Long Pretraining Data in Pretraining

Continue pretrain LLaMA on a mix of long texts [10]

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 

Long Data Mixture [10] Performance when continue pretrained on long data mixture [10]
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Mixing Long Pretraining Data in Pretraining

Continue pretrain LLaMA on a mix of long texts [10]

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 

Long Data Mixture [10] Performance when continue pretrained on long data mixture [10]
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Mixing Long Pretraining Data in Pretraining

Continue pretrain LLaMA on a mix of long texts [10]

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 

Long Data Mixture [10] Performance when continue pretrained on long data mixture [10]

Improved on long-context tasks, but hurt on standard LLM tasks
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Mixing Long Pretraining Data in Pretraining

Mixing back the standard pretraining data

Performance when continue pretrained with different fraction of long data [10]

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 
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Long-context Training Receipt

Start from an open-source LLM, then continue pretrain

Manual? 
Data Mixing

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 
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Long-context Training Receipt

Start from an open-source LLM, then continue pretrain

Manual? 
Data Mixing

Curriculum 
leaning to 
grow the 
length

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 
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Long-context Training Receipt

Start from an open-source LLM, then continue pretrain

Manual? 
Data Mixing

Curriculum 
leaning to 
grow the 
length

Standard 
Continue 
Pretraining

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 
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Long-context Training Performance

Improved long-context ability with maintained short task performance

Performance with Long-context Continue Pretraining [10]

[10]  Gao et al. 2024. How to Train Long-Context Language Models (Effectively) 



Please download and install the 
Slido app on all computers you use

Why only need to do long-context 
training in continuous pretraining but 
not pretraining from scratch?

ⓘ Start presenting to display the poll results on this slide.
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Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough
● Chatbot: long conversation history
● RAG: lots of retrieved documents
● Code: large repository
● Fancy Prompts: can be very long

Ideally, a lot of imagination towards AGI
● Short term memory
● Long term reasoning across multiple text pieces
● Global understanding
● Bring the AGI power of LLMs to all the above

[4] Hsieh et al. 2024. RULER: What’s the Real Context Size of Your Long-Context Language Models? 
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How are Long-Context Ability Evaluated

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly

Long-Context Evaluation Tasks [13]
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How are Long-Context Ability Evaluated

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly

Long-Context Evaluation Tasks [13]

How many of them are unique to long-context ability?
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How are Long-Context Ability Evaluated

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly

Long-Context Evaluation Tasks [13]

How many of them are unique to long-context ability?
How many cannot be solved by divide-and-conquer?
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Performance of Current LLMs on Real Tasks

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly
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Performance of Current LLMs on Real Tasks

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly
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Performance of Current LLMs on Real Tasks

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly
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Performance of Current LLMs on Real Tasks

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly
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Performance of Current LLMs on Real Tasks

[13]  Yen et al. 2024. Helmet: How to evaluate long-context language models effectively and thoroughly
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Remarks

Solution: Mixing in longer organic data in a dedicated continuous pretraining

Same capability as in short-text, nothing more.

Many scenarios not as effective as divide-and-conquer solutions, but very convenient (though costly)
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Remarks

Solution: Mixing in longer organic data in a dedicated continuous pretraining

Same capability as in short-text, nothing more.

Many scenarios not as effective as divide-and-conquer solutions, but very convenient (though costly)

Many questions remain unanswered:
● What scenarios require true long-context ability?
● What is true long-context ability?
● How can be obtain such long-context ability?
● Will scaling up go to lead us there?



Please download and install the 
Slido app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.
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Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving
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Serving Extremely Long Contexts

Main bottleneck: Attention mechanism
● 1 million context length == 1 TB GPU memory!
● Very realistic length in specific scenarios

○ DNA sequences
○ Autonomous Driving

[14]  Liu et al. 2023. Ring Attention with Blockwise Transformers for Near-Infinite Context 
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Serving Extremely Long Contexts

Main bottleneck: Attention mechanism
● 1 million context length == 1 TB GPU memory!
● Very realistic length in specific scenarios

○ DNA sequences
○ Autonomous Driving

Many ways to approximate long-context attention
● Sparsity
● Recurrent
● Attention Sink

[14]  Liu et al. 2023. Ring Attention with Blockwise Transformers for Near-Infinite Context 
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Efficient Serving: Ring Attention

Compute Attention Block-Wise

[14]  Liu et al. 2023. Ring Attention with Blockwise Transformers for Near-Infinite Context 
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Efficient Serving: Ring Attention

Form a communication ring to pass KV blocks around

[14]  Liu et al. 2023. Ring Attention with Blockwise Transformers for Near-Infinite Context 
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Efficient Serving: Ring Attention

Form a communication ring to pass KV blocks around

[14]  Liu et al. 2023. Ring Attention with Blockwise Transformers for Near-Infinite Context 

No specific order required as attention is a set wise operation
If communication < compute, then no extra latency
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Efficient Serving: Ring Attention

Long-context parallelism for inference efficiency

[14]  Liu et al. 2023. Ring Attention with Blockwise Transformers for Near-Infinite Context 

Max Context-Length in Large Scale Pretraining [14]



Please download and install the 
Slido app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.


