slido

Please download and install the Slido app on all computers you use

① Start presenting to display the audience questions on this slide.

Announcement

HW6 mini-project should be well underway.

If you have not started, you are behind.

Final time announced, check the official calendar.

Final's scope is every lecture after Midterm.

Long Context Language Models

Large Language Models: Methods and Applications

Daphne Ippolito and Chenyan Xiong

Learning Objectives

Learn the scenarios where long-context is explored

Learn the technologies that pretrain long-context models

Understand the benefits and limitations of current long-context models

Outline

Motivation

Probing Long Context Ability

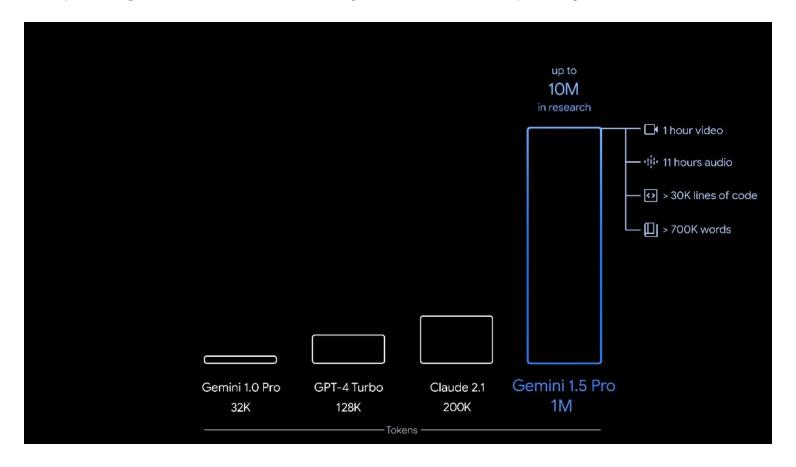
Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving

Long-Context Ability of LLMs

One of the main "competing" metric of industry LLMs in the past year [1]



slido

Please download and install the Slido app on all computers you use

Why we need long context in LLMs?

(1) Start presenting to display the poll results on this slide.

Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough

- Chatbot: long conversation history
- RAG: lots of retrieved documents
- Code: large repository
- Fancy Prompts: can be very long

Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough

- Chatbot: long conversation history
- RAG: lots of retrieved documents
- Code: large repository
- Fancy Prompts: can be very long

Ideally, a lot of imagination towards AGI

- Short term memory
- Long term reasoning across multiple text pieces
- Global understanding
- Bring the AGI power of LLMs to all the above

Long-context Demo of Gemini

https://www.youtube.com/watch?v=LHKL_210CcU&t=107s&ab_channel=Google

Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving

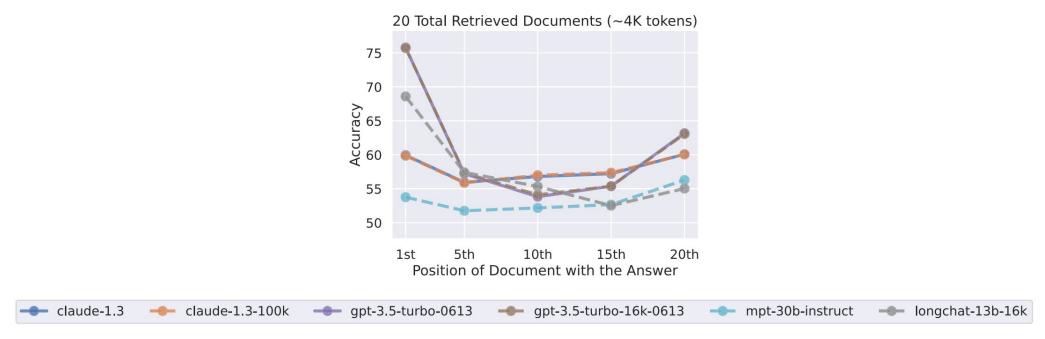
Multi-document QA Task: Answer the question from one relevant document places in the context

Write a high-quality answer for the given question using only the provided search results (some of which might be irrelevant). Document [1] (Title: Asian Americans in science and technology) Prize in physics for discovery of the subatomic particle J/ψ. Subrahmanyan Chandrasekhar shared... Document [2] (Title: List of Nobel laureates in Physics) The first Nobel Prize in Physics was awarded in 1901 to Wilhelm Conrad Röntgen, of Germany, who received... Document [3] (Title: Scientist) and pursued through a unique method, was essentially in place. Ramón y Cajal won the Nobel Prize in 1906 for his remarkable... Question: who got the first nobel prize in physics Answer:

Desired Answer

Wilhelm Conrad Röntgen

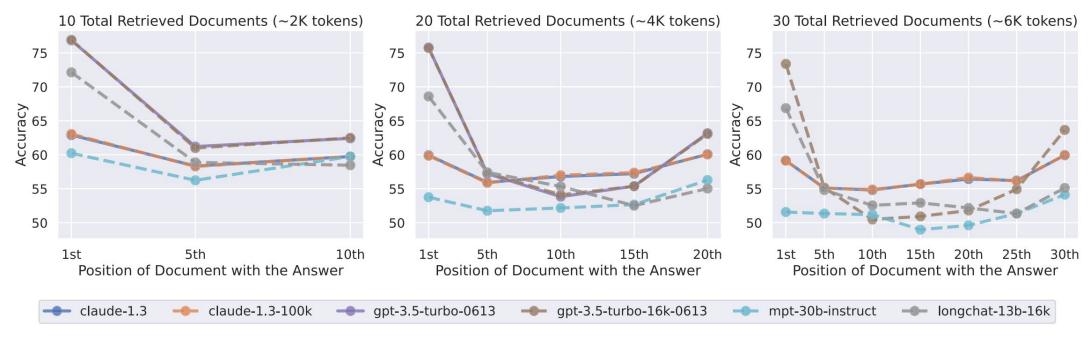
Probing QA Ability with Multiple Document Contexts [2]



QA Accuracy with Relevant Docs at Different Positions in Context [2]



QA Accuracy with Relevant Docs at Different Positions in Context [2]



QA Accuracy with Relevant Docs at Different Positions in Context [2]

More irrelevant contexts distract LLMs

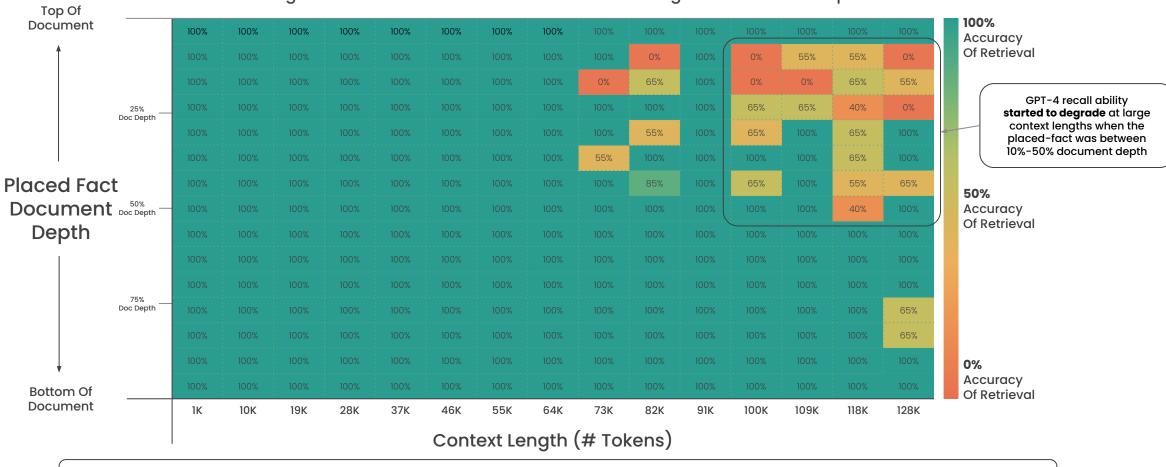
Lost-in-the-middle: worst at finding relevant information in the middle

Placing a "needle" into the context, and test if LLM can retrieve it.

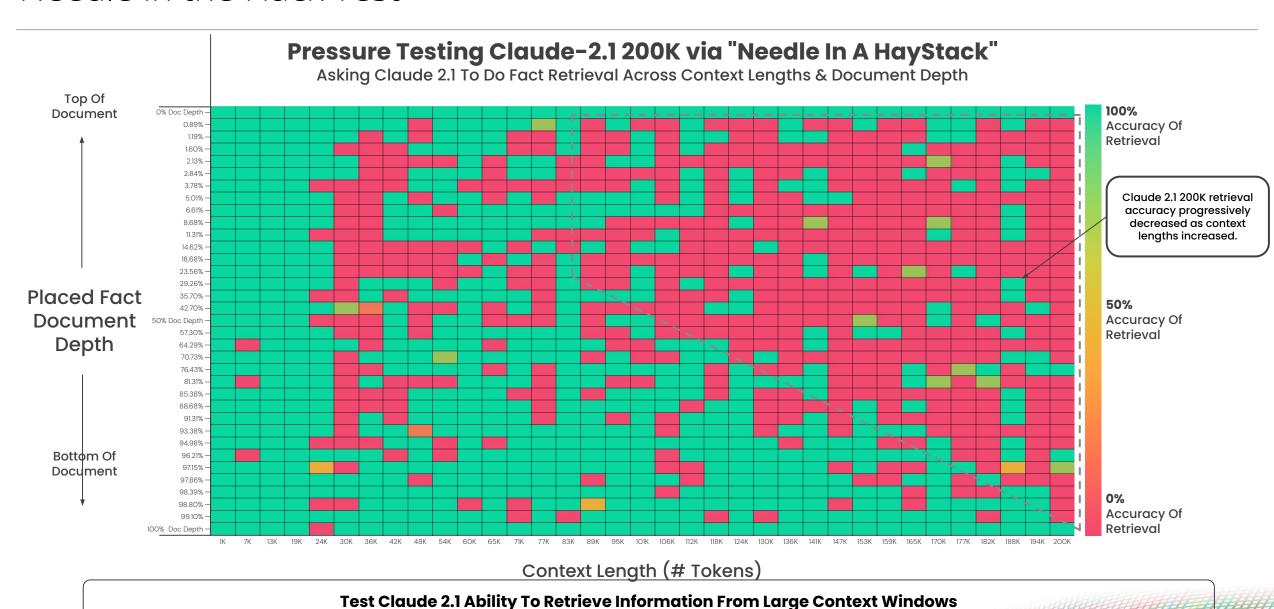
- Needle: a random fact that unlikely to be part of the LLM's parametric knowledge
 - E.g. "The 5 best things to do in San Francisco are: 1) Go to Dolores Park. 2) Eat at Tony's Pizza Napoletana. 3) Visit Alcatraz. 4) Hike up Twin Peaks. 5) Bike across the Golden Gate Bridge"
- Context: other unrelated documents
- Test: if the LLM can extract the answer perfectly
 - E.g. for question "What are the 5 best things to do in San Franscisco?"

Pressure Testing GPT-4 128K via "Needle In A HayStack"

Asking GPT-4 To Do Fact Retrieval Across Context Lengths & Document Depth



Goal: Test GPT-4 Ability To Retrieve Information From Large Context Windows



Lots of varieties of synthetic tasks [4]:

Task	Configuration	Example
Single NIAH (S-NIAH)	type_key = word type_value = number type_haystack = essay size_haystack ∝ context length	(essays) One of the special magic numbers for long-context is: 12345 What is the special magic number for long-context mentioned in the provided text? Answer: 12345

Lots of varieties of synthetic tasks [4]:

Task	Configuration	Example				
Single NIAH (S-NIAH)	type_key = word type_value = number type_haystack = essay size_haystack ∝ context length	(essays) One of the special magic numbers for long-context is: 12345 What is the special magic number for long-context mentioned in the provided text? Answer: 12345				
Multi-keys NIAH (MK-NIAH)	num_keys = 2 type_key = word type_value = number type_haystack = essay size_haystack ∝ context length	(essays) One of the special magic numbers for long-context is: 12345. One of the special magic numbers for large-model is: 54321 What is the special magic number for long-context mentioned in the provided text? Answer: 12345				
Multi-values NIAH (MV-NIAH)	num_values = 2 type_key = word type_value = number type_haystack = essay size_haystack ∝ context length	(essays) One of the special magic numbers for long-context is: 12345. One of the special magic numbers for long-context is: 54321 What are all the special magic numbers for long-context mentioned in the provided text? Answer: 12345 54321				
Multi-queries = 2 NIAH type_key = word (MQ-NIAH) type_value = number type_haystack = essay size_haystack ∝ context length		(essays) One of the special magic numbers for long-context is: 12345. One of the special magic numbers for large-model is: 54321 What are all the special magic numbers for long-context and large-mode mentioned in the provided text? Answer: 12345 54321				

Lots of varieties of synthetic tasks [4]:

Task	Configuration	Example				
Variable Tracking (VT)	num_chains = 2 num_hops = 2 size_noises ∝ context length	(noises) VAR X1 = 12345 VAR Y1 = 54321 VAR X2 = X1 VAR Y2 = Y1 VAR X3 = X2 VAR Y3 = Y2 Find all variables that are assigned the value 12345. Answer: X1 X2 X3				
Common Words Extraction (CWE)	freq_cw = 2, freq_ucw = 1 num_cw = 10 num_ucw \precedex context length	aaa bbb ccc aaa ddd eee ccc fff ggg hhh iii iii What are the 10 most common words in the above list? Answer: aaa ccc iii				
Frequent Words Extraction (FWE)	$\alpha = 2$ num_word \propto context length	aaa bbb ccc aaa ddd eee ccc fff ggg aaa hhh aaa ccc iii iii What are the 3 most frequently appeared words in the above coded text? Answer: aaa ccc iii				
Question Answering (QA)	dataset = SQuAD num_document ∝ context length	Document 1: aaa Document 2: bbb Document 3: ccc Question: question Answer: bbb				

What is the extractive ability of LLMs on long inputs?

Models	Claimed Length	Effective Length	4K	8K	16K	32K	64K	128K	Avg.
Llama2 (7B)	4K	-	85.6						
Gemini-1.5-Pro	1M	>128K	96.7	95.8	96.0	95.9	95.9	94.4	95.8
GPT-4	128K	64K	96.6	96.3	95.2	93.2	87.0	81.2	91.6
Llama3.1 (70B)	128K	64K	96.5	95.8	95.4	94.8	88.4	66.6	89.6
Qwen2 (72B)	128K	32K	96.9	96.1	94.9	94.1	79.8	53.7	85.9
Command-R-plus (104B)	128K	32K	95.6	95.2	94.2	92.0	84.3	63.1	87.4
GLM4 (9B)	1M	64K	94.7	92.8	92.1	89.9	86.7	83.1	89.9
Llama3.1 (8B)	128K	32K	95.5	93.8	91.6	87.4	84.7	77.0	88.3
GradientAI/Llama3 (70B)	1M	16K	95.1	94.4	90.8	85.4	80.9	72.1	86.5
Mixtral-8x22B (39B/141B)	64K	32K	95.6	94.9	93.4	90.9	84.7	31.7	81.9
Yi (34B)	200K	32K	93.3	92.2	91.3	87.5	83.2	77.3	87.5
Phi3-medium (14B)	128K	32K	93.3	93.2	91.1	86.8	78.6	46.1	81.5
Mistral-v0.2 (7B)	32K	16K	93.6	91.2	87.2	75.4	49.0	13.8	68.4
LWM (7B)	1M	<4K	82.3	78.4	73.7	69.1	68.1	65.0	72.8
DBRX (36B/132B)	32K	8K	95.1	93.8	83.6	63.1	2.4	0.0	56.3
Together (7B)	32K	4K	88.2	81.1	69.4	63.0	0.0	0.0	50.3
LongChat (7B)	32K	<4 K	84.7	79.9	70.8	59.3	0.0	0.0	49.1
LongAlpaca (13B)	32K	<4K	60.6	57.0	56.6	43.6	0.0	0.0	36.3

Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough

- Chatbot: long conversation history
- RAG: lots of retrieved documents
- Code: large repository
- Fancy Prompts: can be very long

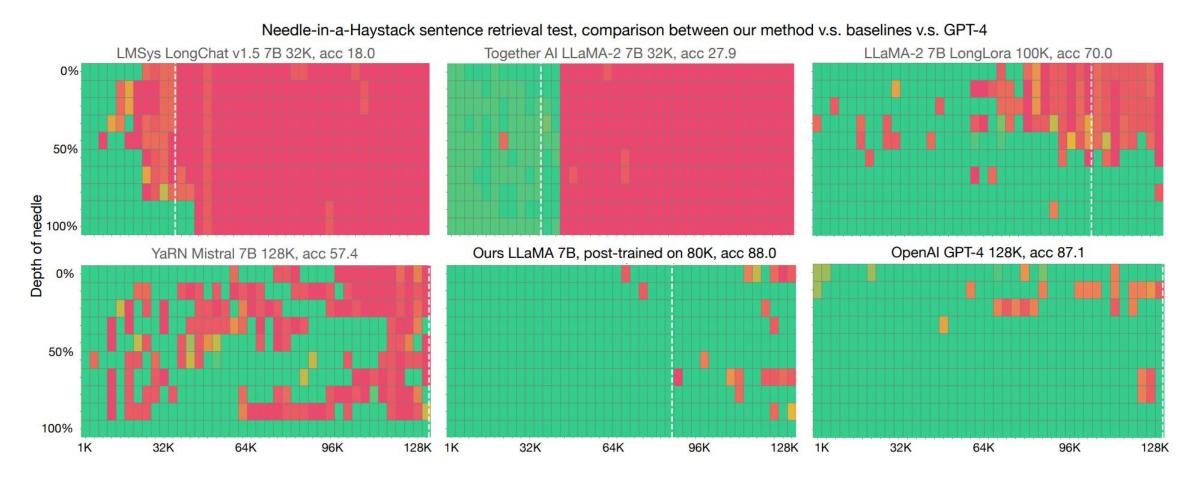
Ideally, a lot of imagination towards AGI

- Short term memory
- Long term reasoning across multiple text pieces
- Global understanding
- Bring the AGI power of LLMs to all the above

Can Needle In the Hack evaluation reflect LLM's long context ability

(i) Start presenting to display the poll results on this slide.

Post training on longer documents yield almost perfect extraction [5]



Easy to achieve 100 Needle in the Hach score (NIAH)

		HELMET				
Models	NIAH	Recall	RAG	Re-rank		
Fu et al. (2024)	100	95.8	52.1	23.1		
Llama-3.1-8B Llama-3.1-70B	100 100	99.4 100	56.3 62.1	37.0 49.2		

Outline

Motivation

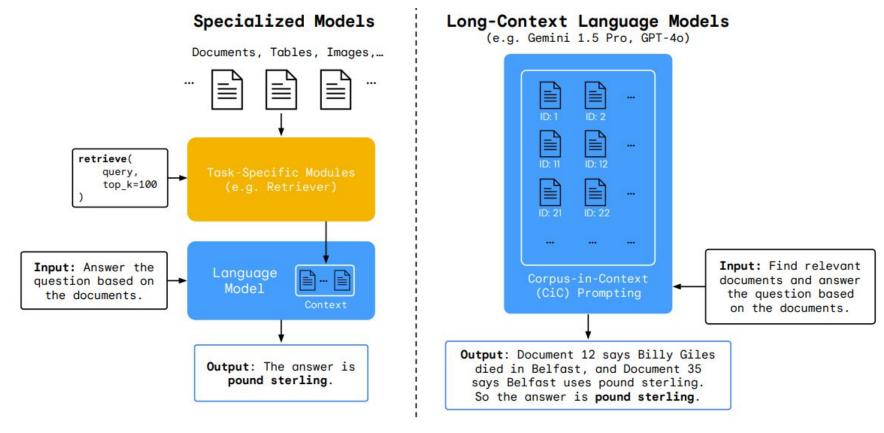
Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

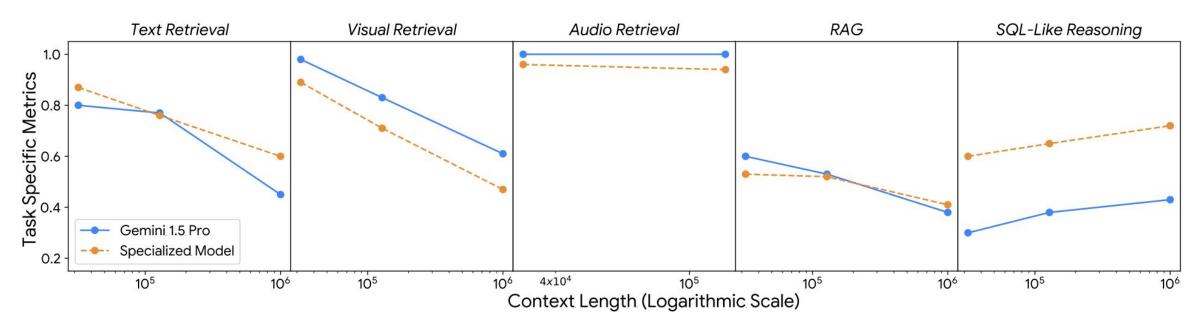
Efficient Serving

Can Long-context LLM replace task-specific models, like retriever?



Specialized Models versus Long-Context LLMs [6]

Can Long-context LLM replace task-specific models, like retriever?



Specialized Models versus Long-Context LLMs [6]

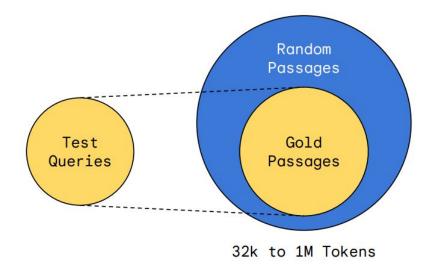
Can Long-context LLM replace task-specific models, like retriever?

- Similar ish performances
- Pros: Convenience
- Cons: Cost

Can Long-context LLM replace task-specific models, like retriever?

- Similar ish performances
- Pros: Convenience
- Cons: Cost

Note, tested on distractor settings, much simpler than real retrieval



Also: 1M tokens are merely 500 documents

slido

Please download and install the Slido app on all computers you use

① Start presenting to display the audience questions on this slide.

Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

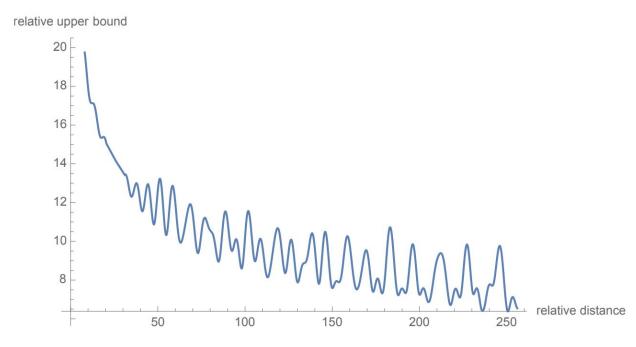
Adapting LLMs to Long Context Tasks

Efficient Serving

What are the gaps?

Positional encodings only capture shorter context

- Absolute and relative: never learned long context positions
- RoPE: strong decay over distance



Long-term Decay of RoPE [7]

34

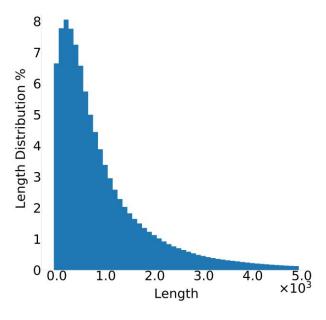
What are the gaps?

Format: Positional encodings only capture shorter context

- Absolute and relative: never learned long context positions
- RoPE: strong decay over distance

Distribution Shift:

- Pretraining data are mainly "short" documents
- Empirically no attentions across document boundary



Distribution of Web Page Length in Tokens [8]

What are the gaps?

Format: Positional encodings only capture shorter context

- Absolute and relative: never learned long context positions
- RoPE: strong decay over distance

Distribution Shift:

- Pretraining data are mainly "short" documents
- Empirically no attentions across document boundary

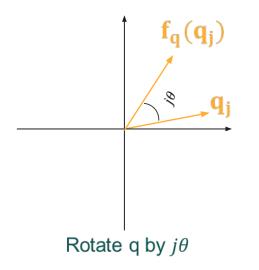
Source of Intelligence: how do LLMs learn long-term dependency or global reasoning?

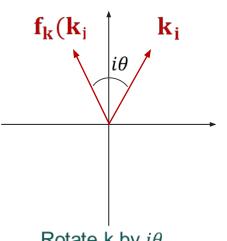
- Pretrained on next token prediction task solely
- How many next token prediction require information 128K tokens away?

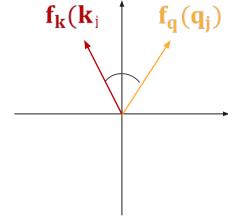
Position Encoding: Rotational Position Embedding

Incorporate the vector rotation in the attention mechanism (2d space) [7]:

$$f_q(q_j) = \begin{pmatrix} \cos j\theta & -\sin j\theta \\ \sin j\theta & \cos j\theta \end{pmatrix} {q_j^1 \choose q_j^2} \qquad f_k(k_i) = \begin{pmatrix} \cos i\theta & -\sin i\theta \\ \sin i\theta & \cos i\theta \end{pmatrix} {k_i^1 \choose k_i^2} \qquad \theta_k = (1/b^{2(i-1)/d})$$







Rotate k by $i\theta$

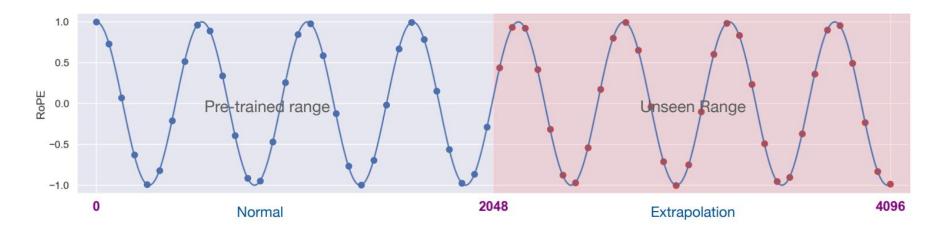
Attention only depends on i-j

Attention score by the dot prod of rotated vectors:

Attention score
$$(\mathbf{q}_j, \mathbf{k}_i) = f_q(q_j) \cdot f_k(k_i) = \begin{pmatrix} q_j^1 \\ q_j^2 \end{pmatrix}^T \begin{pmatrix} \cos j\theta & -\sin j\theta \\ \sin j\theta & \cos j\theta \end{pmatrix}^T \begin{pmatrix} \cos i\theta & -\sin i\theta \\ \sin i\theta & \cos i\theta \end{pmatrix} \begin{pmatrix} k_i^1 \\ k_i^2 \end{pmatrix}$$

Adapting Positional Encoding

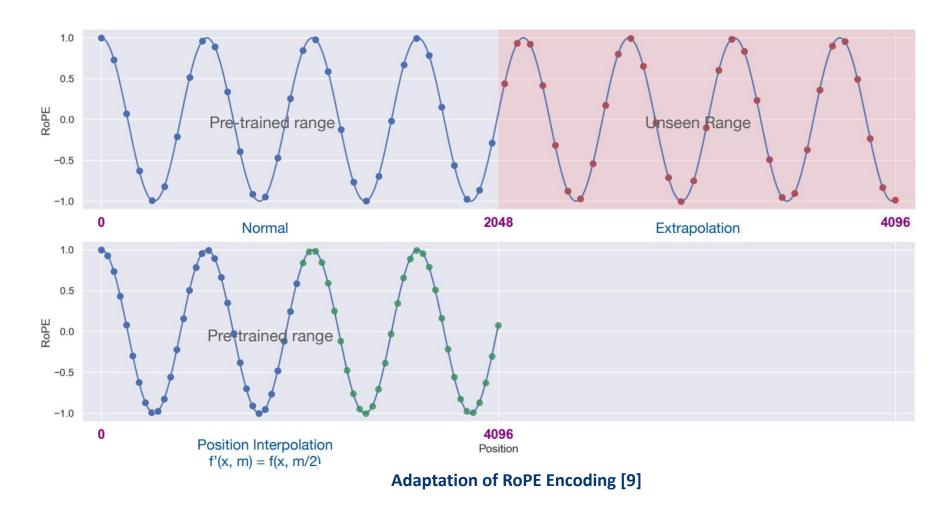
Direct application leads to unseen range (also decayed long term dependency)



Adaptation of RoPE Encoding [9]

Adapting Positional Encoding

Interpolate the position into a smaller range (increasing RoPE frequency)



Adapting Positional Encoding

Interpolate the position into a smaller range (increasing RoPE frequency b) $\theta_k = (1/b^{2(i-1)/d})$

RoPE Base			Short-Context					
$(\times 10^6)$	Recall	RAG	Re-rank	ICL	QA	Summ.	Avg.	Avg.
0.5	25.8	37.0	4.4	73.8	17.5	16.3	29.1	65.0
4.0	81.3	47.8	18.2	76.5	31.8	36.3	48.7	65.3
8.0	96.0	54.9	29.4	73.9	35.7	37.9	54.6	65.5

Performance with Different RoPE frequency [10]

What are the gaps?

Format: Positional encodings only capture shorter context

- Absolute and relative: never learned long context positions
- RoPE: strong decay over distance

Distribution Shift:

- Pretraining data are mainly "short" documents
- Empirically no attentions across document boundary

Source of Intelligence: how do LLMs learn long-term dependency or global reasoning?

- Pretrained on next token prediction task solely
- How many next token prediction require information 128K tokens away?

Learning Long Context in Pretraining

Increase the fraction of longer text sequence in pretraining data

- Let model see more long sequences in pretraining
- Hope it naturally learns long context
 - LLMs do learn a lot of things from next token prediction

Where to get long pretraining sequences?

Concatenating documents together?

Attention		Short-Context						
Attention	Recall	RAG	Re-rank	ICL	QA	Summ.	Avg.	Avg.
No doc masks	97.4	53.6	20.4	76.6	37.2	36.3	53.6	64.9
Document masks	96.0	54.9	29.4	73.9	35.7	37.9	54.6	65.5

Concatenating documents together?

Attention		Short-Context						
Attention	Recall	RAG	Re-rank	ICL	QA	Summ.	Avg.	Avg.
No doc masks	97.4	53.6	20.4	76.6	37.2	36.3	53.6	64.9
Document masks	96.0	54.9	29.4	73.9	35.7	37.9	54.6	65.5

Attention cross document boundary hurts significantly [10] Can be mitigated but still often underperforms

Create synthetic data for long context tasks

Simple dictionary key-value retrieval (with an answer template)

```
Do a task using the list of dictionaries below.

Dictionary [1] {122: 765, 4548: 1475, 4818: 4782}
Dictionary [2] {526: 290, 9205: 9318, 9278: 1565}
...

Dictionary [32] {2931: 8364, 196: 1464, 812: 5363}
...

Dictionary [85] {344: 1579, 116: 617, 330: 411}

Above is a list of dictionaries such that each key and value is an integer. Report the value of key 2931 and the dictionary it is in. Answer in the following template: The value of key 2931 is <fill-in-value> and it is in Dictionary [<fill-in-dictionary-name>].

Desired answer: The value of key 2931 is 8364 and it is in Dictionary [32].
```

Synthetic Key-value Retrieval Task to Fine-tune Long-context LLMs [11]

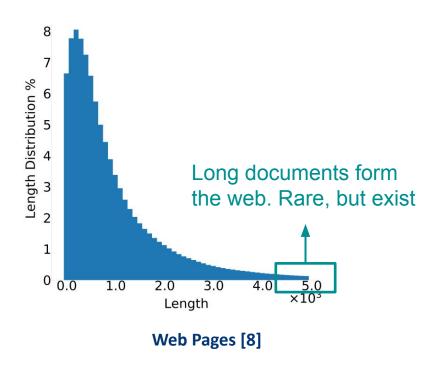
Create synthetic data for long context tasks

Do a task using the list of dictionaries below. Dictionary [1] {122: 765, 4548: 1475, 4818: 4782} Dictionary [2] {526: 290, 9205: 9318, 9278: 1565} ... Dictionary [32] {2931: 8364, 196: 1464, 812: 5363} ... Dictionary [85] {344: 1579, 116: 617, 330: 411} Above is a list of dictionaries such that each key and value is an integer. Report the value of key 2931 and the dictionary it is in. Answer in the following template: The value of key 2931 is <fill-in-value> and it is in Dictionary [32]. Desired answer: The value of key 2931 is 8364 and it is in Dictionary [32].

Synthetic Key-value Retrieval Task to Fine-tune Long-context LLMs [11]

Hard to believe this leads to general long-context ability. Also may lead to model collapse (next lecture).

Up sample long documents exist in organic data



Code Repos [12]

Other Long Documents

Continue pretrain LLaMA on a mix of long texts [10]

Data	#Long tokens
Code Repos	98.8B
SP/Books	33.2B
SP/CC	15.3B
SP/Arxiv	5.2B
SP/GitHub	2.8B
SP/Wiki	0.1B
SP/StackEx	< 0.1B
SP/C4	< 0.1B

Long Data Mixture [10]

Continue pretrain LLaMA on a mix of long texts [10]

Data	#Long tokens
Code Repos	98.8B
SP/Books	33.2B
SP/CC	15.3B
SP/Arxiv	5.2B
SP/GitHub	2.8B
SP/Wiki	0.1B
SP/StackEx	< 0.1B
SP/C4	< 0.1B

Long Data (60%)		Long-Context								
Long Data (00 70)	Recall	RAG	Re-rank	ICL	QA	Summ.	Avg.			
CommonCrawl	84.1	53.3	28.1	67.5	35.2	37.0	50.9			
Books	94.9	53.9	30.7	72.2	33.2	37.7	53.8			
Code Repos	99.2	53.8	29.0	61.2	34.7	36.2	52.3			
Books/Repos 1:1	96.0	54.9	29.4	73.9	35.7	37.9	54.6			

Long Data Mixture [10]

Performance when continue pretrained on long data mixture [10]

Continue pretrain LLaMA on a mix of long texts [10]

Data	#Long tokens
Code Repos	98.8B
SP/Books	33.2B
SP/CC	15.3B
SP/Arxiv	5.2B
SP/GitHub	2.8B
SP/Wiki	0.1B
SP/StackEx	< 0.1B
SP/C4	< 0.1B

Long Data (60%)		Short-Context						
Long Data (00 %)	Recall	RAG	Re-rank	ICL	QA	Summ.	Avg.	Avg.
CommonCrawl	84.1	53.3	28.1	67.5	35.2	37.0	50.9	66.5
Books	94.9	53.9	30.7	72.2	33.2	37.7	53.8	65.5
Code Repos	99.2	53.8	29.0	61.2	34.7	36.2	52.3	65.9
Books/Repos 1:1	96.0	54.9	29.4	73.9	35.7	37.9	54.6	65.5

Long Data Mixture [10]

Performance when continue pretrained on long data mixture [10]

Continue pretrain LLaMA on a mix of long texts [10]

Data	#Long tokens
Code Repos	98.8B
SP/Books	33.2B
SP/CC	15.3B
SP/Arxiv	5.2B
SP/GitHub	2.8B
SP/Wiki	0.1B
SP/StackEx	< 0.1B
SP/C4	< 0.1B

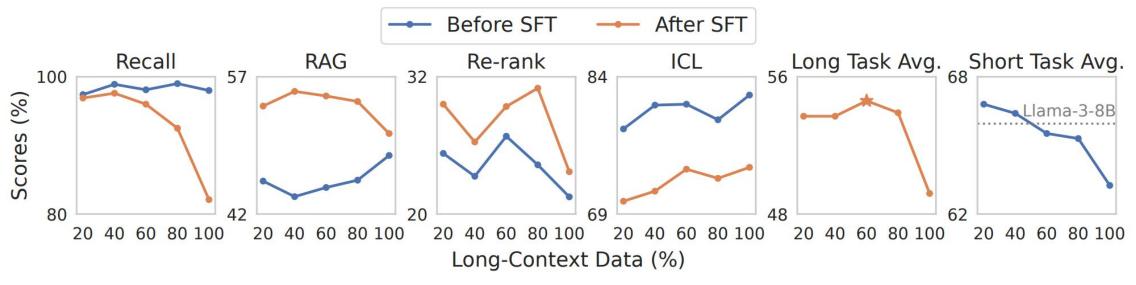
Long Data (60%)		Short-Context						
Long Data (60 %)	Recall	RAG	Re-rank	ICL	QA	Summ.	Avg.	Avg.
CommonCrawl	84.1	53.3	28.1	67.5	35.2	37.0	50.9	66.5
Books	94.9	53.9	30.7	72.2	33.2	37.7	53.8	65.5
Code Repos	99.2	53.8	29.0	61.2	34.7	36.2	52.3	65.9
Books/Repos 1:1	96.0	54.9	29.4	73.9	35.7	37.9	54.6	65.5

Long Data Mixture [10]

Performance when continue pretrained on long data mixture [10]

Improved on long-context tasks, but hurt on standard LLM tasks

Mixing back the standard pretraining data



Performance when continue pretrained with different fraction of long data [10]

Long-context Training Receipt

Start from an open-source LLM, then continue pretrain

9		(Continued Long-context Training					
「	Data	30% code repos, 30% books, 3% textbooks, 37% ShortMix						
Manual? Data Mixing		ShortMix:	27% FineWeb-Edu, 27% FineWeb, 11% Tulu-v2, 11% StackExchange, 8% Wikipedia, 8% OpenWebMath, 8% ArXiv					
	Length	Stage 1 (64K):	Code repos, books, and textbooks at length 64K					
	Curriculum		Code repos: 50% at length 512K, 50% at length 64K Books: 17% at length 512K, 83% at length 64K Textbooks at length 512K					
	Steps	Stage 1: 20B toke	ens (2.2K H100 hours), Stage 2: 20B tokens (12.2K H100 hours)					
	Model	Initialization: RoPE: Attention:	Llama-3-8B-Instruct (original RoPE base freq. 5×10^5) Stage 1: 8×10^6 , Stage 2: 1.28×10^8 Full attention with cross-document attention masking					
	Optim.	AdamW (weigh LR: Batch size:	t decay = 0.1, β_1 = 0.9, β_2 = 0.95) 1e-5 with 10% warmup and cosine decay to $1e-6$, each stage 4M tokens for stage 1, $8M$ tokens for stage 2					

Long-context Training Receipt

Start from an open-source LLM, then continue pretrain

	,		Continued Long-context Training		
Г	Data	30% code repos,	30% books, 3% textbooks, 37% ShortMix		
Manual? Data Mixing Short	ShortMix:	27% FineWeb-Edu, 27% FineWeb, 11% Tulu-v2, 11% StackExchange, 8% Wikipedia, 8% OpenWebMath, 8% ArXiv			
Curriculum	Length	Stage 1 (64K):	Code repos, books, and textbooks at length 64K		
leaning to grow the length	grow the	Stage 2 (512K):	Code repos: 50% at length 512K, 50% at length 64K Books: 17% at length 512K, 83% at length 64K Textbooks at length 512K		
	Steps	Stage 1: 20B toke	ens (2.2K H100 hours), Stage 2: 20B tokens (12.2K H100 hours)		
	Model	Initialization: RoPE: Attention:	Llama-3-8B-Instruct (original RoPE base freq. 5×10^5) Stage 1: 8×10^6 , Stage 2: 1.28×10^8 Full attention with cross-document attention masking		
Optim.		AdamW (weight decay = 0.1, $\beta_1 = 0.9$, $\beta_2 = 0.95$) LR: $1e - 5$ with 10% warmup and cosine decay to $1e - 6$, e Batch size: 4M tokens for stage 1, 8M tokens for stage 2			

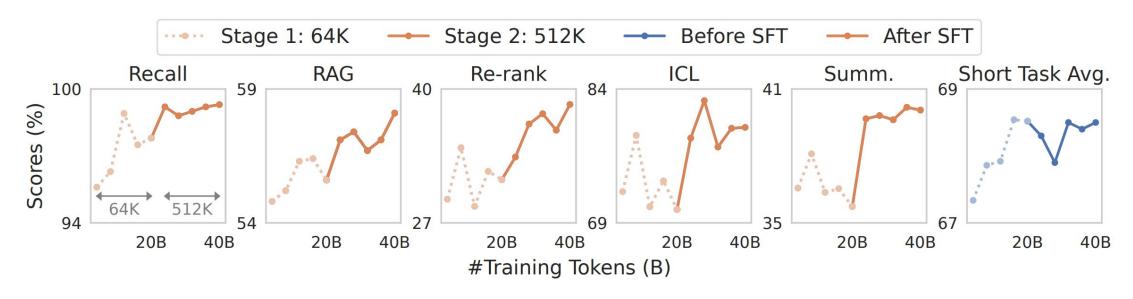
Long-context Training Receipt

Start from an open-source LLM, then continue pretrain

	Continued Long-context Training											
[Data	30% code repos,	30% books, 3% textbooks, 37% ShortMix									
Manual? Data Mixing		ShortMix:	27% FineWeb-Edu, 27% FineWeb, 11% Tulu-v2, 11% StackExchange, 8% Wikipedia, 8% OpenWebMath, 8% ArXiv									
Curriculum	Length	Stage 1 (64K):	Code repos, books, and textbooks at length 64K									
leaning to grow the length	Curriculum	Stage 2 (512K):	Code repos: 50% at length 512K, 50% at length 64K Books: 17% at length 512K, 83% at length 64K Textbooks at length 512K									
	Steps	Stage 1: 20B tokens (2.2K H100 hours), Stage 2: 20B tokens (12.2K H100 h										
Standard Continue Pretraining	Model	Initialization: Llama-3-8B-Instruct (original RoPE base freq. 5×10^5) RoPE: Stage 1: 8×10^6 , Stage 2: 1.28×10^8 Attention: Full attention with cross-document attention masking										
Ĭ	Optim.	AdamW (weight LR: Batch size:	t decay = 0.1, β_1 = 0.9, β_2 = 0.95) 1e-5 with 10% warmup and cosine decay to $1e-6$, each stage 4M tokens for stage 1, 8M tokens for stage 2									

Long-context Training Performance

Improved long-context ability with maintained short task performance



Performance with Long-context Continue Pretraining [10]

slido

Please download and install the Slido app on all computers you use

Why only need to do long-context training in continuous pretraining but not pretraining from scratch?

(i) Start presenting to display the poll results on this slide.

Why Long-context?

Many scenarios naturally needs long inputs. 4K token is not enough

- Chatbot: long conversation history
- RAG: lots of retrieved documents
- Code: large repository
- Fancy Prompts: can be very long

Ideally, a lot of imagination towards AGI

- Short term memory
- Long term reasoning across multiple text pieces
- Global understanding
- Bring the AGI power of LLMs to all the above

How are Long-Context Ability Evaluated

Category	Dataset	Metrics	Description
Retrieval- augmented generation	Natural Questions TriviaQA PopQA HotpotQA	SubEM SubEM SubEM SubEM	Factoid question answering Trivia question answering Long-tail entity question answering Multi-hop question answering
Passage re-ranking	MS MARCO	NDCG@10	Rerank passage for a query
Generation with citations	ALCE ASQA ALCE Qampari	Recall, Cite Recall, Cite	Answer ambiguous questions with citations Answer factoid questions with citations
Long- document QA	NarrativeQA ∞BENCH QA ∞BENCH MC	Model-based ROUGE F1 Accuracy	Book and movie script QA Novel QA with entity replacement Novel multiple-choice QA with entity replacement
Summarization	∞BENCH Sum Multi-LexSum	Model-based Model-based	Novel summarization with entity replacement Summarizing multiple legal documents
Many-shot in-context learning	TREC Coarse TREC Fine NLU BANKING77 CLINC150	Accuracy Accuracy Accuracy Accuracy Accuracy	Question type classification, 6 labels Question type classification, 50 labels Task intent classification, 68 labels Banking intent classification, 77 labels Intent classification, 151 labels
Synthetic recall	JSON KV RULER MK Needle RULER MK UUID RULER MV	SubEM SubEM SubEM SubEM	Retrieve a key in JSON dictionary Retrieve the needle (a number) within noisy needles Retrieve the needle (a UUID) within noisy needles Retrieve multiple values for one needle (key)

Long-Context Evaluation Tasks [13]

How are Long-Context Ability Evaluated

Category	Dataset	Metrics	Description
Retrieval- augmented generation	Natural Questions TriviaQA PopQA HotpotQA	SubEM SubEM SubEM SubEM	Factoid question answering Trivia question answering Long-tail entity question answering Multi-hop question answering
Passage re-ranking	MS MARCO	NDCG@10	Rerank passage for a query
Generation with citations	ALCE ASQA ALCE Qampari	Recall, Cite Recall, Cite	Answer ambiguous questions with citations Answer factoid questions with citations
Long- document QA	NarrativeQA ∞BENCH QA ∞BENCH MC	Model-based ROUGE F1 Accuracy	Book and movie script QA Novel QA with entity replacement Novel multiple-choice QA with entity replacement
Summarization	∞BENCH Sum Multi-LexSum	Model-based Model-based	Novel summarization with entity replacement Summarizing multiple legal documents
Many-shot in-context learning	TREC Coarse TREC Fine NLU BANKING77 CLINC150	Accuracy Accuracy Accuracy Accuracy Accuracy	Question type classification, 6 labels Question type classification, 50 labels Task intent classification, 68 labels Banking intent classification, 77 labels Intent classification, 151 labels
Synthetic recall	JSON KV RULER MK Needle RULER MK UUID RULER MV	SubEM SubEM SubEM SubEM	Retrieve a key in JSON dictionary Retrieve the needle (a number) within noisy needles Retrieve the needle (a UUID) within noisy needles Retrieve multiple values for one needle (key)

Long-Context Evaluation Tasks [13]

How many of them are unique to long-context ability?

How are Long-Context Ability Evaluated

Category	Dataset	Metrics	Description
Retrieval- augmented generation	Natural Questions TriviaQA PopQA HotpotQA	SubEM SubEM SubEM SubEM	Factoid question answering Trivia question answering Long-tail entity question answering Multi-hop question answering
Passage re-ranking	MS MARCO	NDCG@10	Rerank passage for a query
Generation with citations	ALCE ASQA ALCE Qampari	Recall, Cite Recall, Cite	Answer ambiguous questions with citations Answer factoid questions with citations
Long- document QA	NarrativeQA ∞Bench QA ∞Bench MC	Model-based ROUGE F1 Accuracy	Book and movie script QA Novel QA with entity replacement Novel multiple-choice QA with entity replacement
Summarization	∞BENCH Sum Multi-LexSum	Model-based Model-based	Novel summarization with entity replacement Summarizing multiple legal documents
Many-shot in-context learning	TREC Coarse TREC Fine NLU BANKING77 CLINC150	Accuracy Accuracy Accuracy Accuracy Accuracy	Question type classification, 6 labels Question type classification, 50 labels Task intent classification, 68 labels Banking intent classification, 77 labels Intent classification, 151 labels
Synthetic recall	JSON KV RULER MK Needle RULER MK UUID RULER MV	SubEM SubEM SubEM SubEM	Retrieve a key in JSON dictionary Retrieve the needle (a number) within noisy needles Retrieve the needle (a UUID) within noisy needles Retrieve multiple values for one needle (key)

Long-Context Evaluation Tasks [13]

How many of them are unique to long-context ability? How many cannot be solved by divide-and-conquer?

		F	Recal	II.		RAG							
GPT-4	99.5	93.5	93.1	88.6	72.8	75.3	73.6	70.9	68.1	65.0			
GPT-40-05	94.7	93.4	91.2	87.9	81.6	74.1	73.1	71.8	71.1	71.0			
GPT-4o-08	99.8	99.4	97.9	97.0	97.0	73.4	73.8	72.4	71.1	70.8			
GPT-4o-mini	100.0	99.8	99.1	92.0	83.6	72.6	71.0	69.6	68.3	66.7			
Claude-3.5-sonnet	99.9	97.2	96.2	95.2	93.3	60.4	52.8	51.1	39.8	41.1			
Gemini-1.5-Flash	93.5	93.6	93.2	92.5	87.8	71.6	69.9	69.6	68.6	67.6			
Gemini-1.5-Pro	81.3	83.6	86.9	87.1	84.1	73.0	72.9	71.6	71.9	70.9			
Llama-3.1-8B	99.4	99.6	97.2	98.3	91.1	69.1	67.9	64.8	64.6	59.0			
Llama-3.1-70B	99.9	99.8	98.0	87.4	84.4	73.0	72.2	71.5	70.3	55.8			
Mistral-Nemo	93.6	83.3	52.3	21.5	12.1	68.4	63.6	56.9	47.6	39.9			
MegaBeam-Mistral	93.9	90.0	81.6	83.6	76.0	62.6	62.6	61.8	57.4	55.2			
Phi-3-mini-128k	90.3	84.9	81.1	80.1	42.3	61.2	60.6	57.9	55.7	46.0			
Phi-3-small-128k	91.0	89.3	73.5	66.7	59.0	66.5	65.8	62.5	61.3	58.1			
Phi-3-med-128k	76.1	70.6	62.5	51.8	14.4	65.3	64.5	62.7	56.9	45.2			
Phi-3.5-mini	95.8	90.7	83.1	77.2	40.7	59.8	57.9	55.6	51.0	41.4			
Jamba-1.5-Mini	87.3	85.6	85.0	79.7	76.8	66.2	65.0	64.0	63.4	56.6			
ProLong	96.6	95.8	93.0	92.9	85.5	68.8	69.3	66.6	66.5	64.8			
	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k			

		F	Recal			RAG					Cite						Re-rank				
GPT-4	99.5	93.5	93.1	88.6	72.8	75.3	73.6	70.9	68.1	65.0	43.8	45.2	28.8	3.6	3.1	76.4	72.3	63.9	37.8	16.8	
GPT-4o-05	94.7	93.4	91.2	87.9	81.6	74.1	73.1	71.8	71.1	71.0	43.7	44.2	44.1	44.1	40.6	74.4	74.3	67.2	56.9	46.8	
GPT-4o-08	99.8	99.4	97.9	97.0	97.0	73.4	73.8	72.4	71.1	70.8	45.8	47.1	46.4	45.7	45.3	75.6	73.1	67.4	59.5	47.9	
GPT-4o-mini	100.0	99.8	99.1	92.0	83.6	72.6	71.0	69.6	68.3	66.7	36.1	33.7	31.3	28.0	24.5	68.9	65.2	56.4	40.5	30.5	
Claude-3.5-sonnet	99.9	97.2	96.2	95.2	93.3	60.4	52.8	51.1	39.8	41.1	36.7	32.9	30.5	26.4	12.5	76.3	46.1	36.0	14.5	9.1	
Gemini-1.5-Flash	93.5	93.6	93.2	92.5	87.8	71.6	69.9	69.6	68.6	67.6	48.4	46.6	43.0	36.7	29.0	75.1	73.9	68.9	59.3	50.7	
Gemini-1.5-Pro	81.3	83.6	86.9	87.1	84.1	73.0	72.9	71.6	71.9	70.9	47.1	43.0	44.7	45.1	42.5	75.8	73.2	71.7	65.9	58.6	
Llama-3.1-8B	99.4	99.6	97.2	98.3	91.1	69.1	67.9	64.8	64.6	59.0	35.4	26.9	12.6	12.8	3.4	58.7	45.9	42.0	31.9	15.0	
Llama-3.1-70B	99.9	99.8	98.0	87.4	84.4	73.0	72.2	71.5	70.3	55.8	44.5	42.1	39.5	30.9	7.6	73.3	69.7	58.4	40.0	19.4	
Mistral-Nemo	93.6	83.3	52.3	21.5	12.1	68.4	63.6	56.9	47.6	39.9	33.7	8.6	3.7	1.3	0.5	56.8	46.0	13.1	0.0	0.0	
MegaBeam-Mistral	93.9	90.0	81.6	83.6	76.0	62.6	62.6	61.8	57.4	55.2	22.3	13.8	9.7	4.5	4.0	49.9	36.2	34.2	21.7	15.9	
Phi-3-mini-128k	90.3	84.9	81.1	80.1	42.3	61.2	60.6	57.9	55.7	46.0	22.8	16.9	9.3	2.7	8.0	44.1	28.7	25.6	16.6	5.8	
Phi-3-small-128k	91.0	89.3	73.5	66.7	59.0	66.5	65.8	62.5	61.3	58.1	18.9	15.9	8.9	4.6	2.9	38.3	32.1	28.1	17.2	6.5	
Phi-3-med-128k	76.1	70.6	62.5	51.8	14.4	65.3	64.5	62.7	56.9	45.2	39.1	27.1	10.2	5.8	3.3	43.2	33.3	25.5	11.9	5.8	
Phi-3.5-mini	95.8	90.7	83.1	77.2	40.7	59.8	57.9	55.6	51.0	41.4	22.1	17.2	7.1	2.0	2.5	42.4	29.6	23.2	18.0	9.1	
Jamba-1.5-Mini	87.3	85.6	85.0	79.7	76.8	66.2	65.0	64.0	63.4	56.6	15.4	10.0	5.7	3.1	2.5	53.5	43.0	35.6	23.2	14.6	
ProLong	96.6	95.8	93.0	92.9	85.5	68.8	69.3	66.6	66.5	64.8	33.7	24.0	11.0	2.3	1.2	53.8	43.9	39.3	33.3	25.0	
	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k	

		Lo	ongQ	Α		Summ							
GPT-4	47.8	48.1	49.5	47.6	45.7	28.0	29.6	33.6	36.2	35.8			
GPT-40-05	45.2	46.9	51.8	56.0	61.4	29.5	34.9	40.7	42.1	45.1			
GPT-4o-08	40.4	45.7	50.1	53.3	57.4	29.0	35.7	40.9	41.8	43.6			
GPT-4o-mini	37.8	39.6	46.0	51.0	52.2	28.3	33.8	36.7	39.2	40.8			
Claude-3.5-sonnet	29.8	25.8	32.5	18.2	19.9	27.4	33.0	40.1	37.2	40.7			
Gemini-1.5-Flash	33.1	40.2	44.9	51.9	57.9	25.2	30.0	33.2	36.2	39.9			
Gemini-1.5-Pro	33.9	40.2	48.9	53.4	61.7	30.1	32.6	39.3	45.5	45.0			
Llama-3.1-8B	24.6	32.3	39.4	43.3	45.6	23.2	25.7	29.2	30.2	31.5			
Llama-3.1-70B	31.5	38.9	45.8	55.4	58.4	27.7	31.7	35.5	35.8	35.7			
Mistral-Nemo	32.2	32.0	26.8	24.6	24.2	26.0	23.2	25.3	21.5	20.1			
MegaBeam-Mistral	23.1	30.6	34.0	36.3	34.7	21.6	24.3	27.9	30.4	29.4			
Phi-3-mini-128k	24.4	31.7	31.6	34.1	27.7	20.8	24.2	26.9	28.1	28.8			
Phi-3-small-128k	22.8	29.0	33.4	40.3	36.4	18.1	20.7	25.4	25.3	26.6			
Phi-3-med-128k	22.6	21.5	20.4	20.4	27.1	23.1	24.5	25.4	31.4	28.6			
Phi-3.5-mini	25.2	28.3	29.9	31.2	27.8	21.2	23.9	24.6	29.4	27.9			
Jamba-1.5-Mini	34.8	41.1	46.2	52.2	52.7	18.0	19.0	19.1	19.6	19.3			
ProLong	27.2	34.1	36.2	42.3	43.5	21.1	25.9	26.1	27.2	29.0			
	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k			

		Lo	ongQ	A			5	Sumn	n		ICL						
GPT-4	47.8	48.1	49.5	47.6	45.7	28.0	29.6	33.6	36.2	35.8	78.6	81.6	70.2	55.0	40.1		
GPT-40-05	45.2	46.9	51.8	56.0	61.4	29.5	34.9	40.7	42.1	45.1	77.8	79.2	76.2	65.4	47.7		
GPT-40-08	40.4	45.7	50.1	53.3	57.4	29.0	35.7	40.9	41.8	43.6	83.2	85.6	88.8	86.6	84.6		
GPT-4o-mini	37.8	39.6	46.0	51.0	52.2	28.3	33.8	36.7	39.2	40.8	73.2	77.8	80.0	79.6	80.0		
Claude-3.5-sonnet	29.8	25.8	32.5	18.2	19.9	27.4	33.0	40.1	37.2	40.7	86.0	87.8	88.4	89.6	59.8		
Gemini-1.5-Flash	33.1	40.2	44.9	51.9	57.9	25.2	30.0	33.2	36.2	39.9	70.4	67.0	53.6	39.5	21.9		
Gemini-1.5-Pro	33.9	40.2	48.9	53.4	61.7	30.1	32.6	39.3	45.5	45.0	77.3	79.6	81.0	79.5	76.3		
Llama-3.1-8B	24.6	32.3	39.4	43.3	45.6	23.2	25.7	29.2	30.2	31.5	69.8	74.6	77.0	78.6	83.4		
Llama-3.1-70B	31.5	38.9	45.8	55.4	58.4	27.7	31.7	35.5	35.8	35.7	71.6	74.2	77.0	79.4	83.6		
Mistral-Nemo	32.2	32.0	26.8	24.6	24.2	26.0	23.2	25.3	21.5	20.1	66.8	75.4	80.0	81.6	84.4		
MegaBeam-Mistral	23.1	30.6	34.0	36.3	34.7	21.6	24.3	27.9	30.4	29.4	72.0	77.2	78.4	82.8	85.0		
Phi-3-mini-128k	24.4	31.7	31.6	34.1	27.7	20.8	24.2	26.9	28.1	28.8	61.6	71.4	73.2	77.0	80.0		
Phi-3-small-128k	22.8	29.0	33.4	40.3	36.4	18.1	20.7	25.4	25.3	26.6	67.6	73.2	79.2	82.6	84.2		
Phi-3-med-128k	22.6	21.5	20.4	20.4	27.1	23.1	24.5	25.4	31.4	28.6	58.8	61.2	70.6	72.4	72.0		
Phi-3.5-mini	25.2	28.3	29.9	31.2	27.8	21.2	23.9	24.6	29.4	27.9	61.2	69.0	74.2	77.8	78.4		
Jamba-1.5-Mini	34.8	41.1	46.2	52.2	52.7	18.0	19.0	19.1	19.6	19.3	77.6	82.0	85.6	88.4	91.2		
ProLong	27.2	34.1	36.2	42.3	43.5	21.1	25.9	26.1	27.2	29.0	66.4	72.2	78.0	81.4	84.0		
	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k		

		LongQA					Summ					ICL					Avg.					
GPT-4	47.8	48.1	49.5	47.6	45.7	28.0	29.6	33.6	36.2	35.8	78.6	81.6	70.2	55.0	40.1	64.2	63.4	58.6	48.1	39.9		
GPT-4o-05	45.2	46.9	51.8	56.0	61.4	29.5	34.9	40.7	42.1	45.1	77.8	79.2	76.2	65.4	47.7	62.8	63.7	63.3	60.5	56.3		
GPT-4o-08	40.4	45.7	50.1	53.3	57.4	29.0	35.7	40.9	41.8	43.6	83.2	85.6	88.8	86.6	84.6	63.9	65.8	66.3	65.0	63.8		
GPT-4o-mini	37.8	39.6	46.0	51.0	52.2	28.3	33.8	36.7	39.2	40.8	73.2	77.8	80.0	79.6	80.0	59.5	60.1	59.9	57.0	54.1		
Claude-3.5-sonnet	29.8	25.8	32.5	18.2	19.9	27.4	33.0	40.1	37.2	40.7	86.0	87.8	88.4	89.6	59.8	59.5	53.7	53.5	45.8	39.5		
Gemini-1.5-Flash	33.1	40.2	44.9	51.9	57.9	25.2	30.0	33.2	36.2	39.9	70.4	67.0	53.6	39.5	21.9	59.6	60.2	58.1	55.0	50.7		
Gemini-1.5-Pro	33.9	40.2	48.9	53.4	61.7	30.1	32.6	39.3	45.5	45.0	77.3	79.6	81.0	79.5	76.3	59.8	60.7	63.5	64.1	62.7		
Llama-3.1-8B	24.6	32.3	39.4	43.3	45.6	23.2	25.7	29.2	30.2	31.5	69.8	74.6	77.0	78.6	83.4	54.3	53.3	51.7	51.4	47.0		
Llama-3.1-70B	31.5	38.9	45.8	55.4	58.4	27.7	31.7	35.5	35.8	35.7	71.6	74.2	77.0	79.4	83.6	60.2	61.2	60.8	57.0	49.3		
Mistral-Nemo	32.2	32.0	26.8	24.6	24.2	26.0	23.2	25.3	21.5	20.1	66.8	75.4	80.0	81.6	84.4	53.9	47.4	36.9	28.3	25.9		
MegaBeam-Mistral	23.1	30.6	34.0	36.3	34.7	21.6	24.3	27.9	30.4	29.4	72.0	77.2	78.4	82.8	85.0	49.3	47.8	46.8	45.2	42.9		
Phi-3-mini-128k	24.4	31.7	31.6	34.1	27.7	20.8	24.2	26.9	28.1	28.8	61.6	71.4	73.2	77.0	80.0	46.4	45.5	43.7	42.0	33.1		
Phi-3-small-128k	22.8	29.0	33.4	40.3	36.4	18.1	20.7	25.4	25.3	26.6	67.6	73.2	79.2	82.6	84.2	46.2	46.6	44.4	42.6	39.1		
Phi-3-med-128k	22.6	21.5	20.4	20.4	27.1	23.1	24.5	25.4	31.4	28.6	58.8	61.2	70.6	72.4	72.0	46.9	43.2	39.6	35.8	28.1		
Phi-3.5-mini	25.2	28.3	29.9	31.2	27.8	21.2	23.9	24.6	29.4	27.9	61.2	69.0	74.2	77.8	78.4	46.8	45.2	42.5	41.0	32.5		
Jamba-1.5-Mini	34.8	41.1	46.2	52.2	52.7	18.0	19.0	19.1	19.6	19.3	77.6	82.0	85.6	88.4	91.2	50.4	49.4	48.7	47.1	44.8		
ProLong	27.2	34.1	36.2	42.3	43.5	21.1	25.9	26.1	27.2	29.0	66.4	72.2	78.0	81.4	84.0	52.5	52.2	50.0	49.4	47.6		
	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k	8k	16k	32k	64k	128k		

Remarks

Solution: Mixing in longer organic data in a dedicated continuous pretraining

Same capability as in short-text, nothing more.

Many scenarios not as effective as divide-and-conquer solutions, but very convenient (though costly)

Remarks

Solution: Mixing in longer organic data in a dedicated continuous pretraining

Same capability as in short-text, nothing more.

Many scenarios not as effective as divide-and-conquer solutions, but very convenient (though costly)

68

Many questions remain unanswered:

- What scenarios require true long-context ability?
- What is true long-context ability?
- How can be obtain such long-context ability?
- Will scaling up go to lead us there?

slido

Please download and install the Slido app on all computers you use

① Start presenting to display the audience questions on this slide.

Outline

Motivation

Probing Long Context Ability

Evaluation on Real Scenarios

Adapting LLMs to Long Context Tasks

Efficient Serving

Serving Extremely Long Contexts

Main bottleneck: Attention mechanism

- 1 million context length == 1 TB GPU memory!
- Very realistic length in specific scenarios
 - DNA sequences
 - Autonomous Driving

Serving Extremely Long Contexts

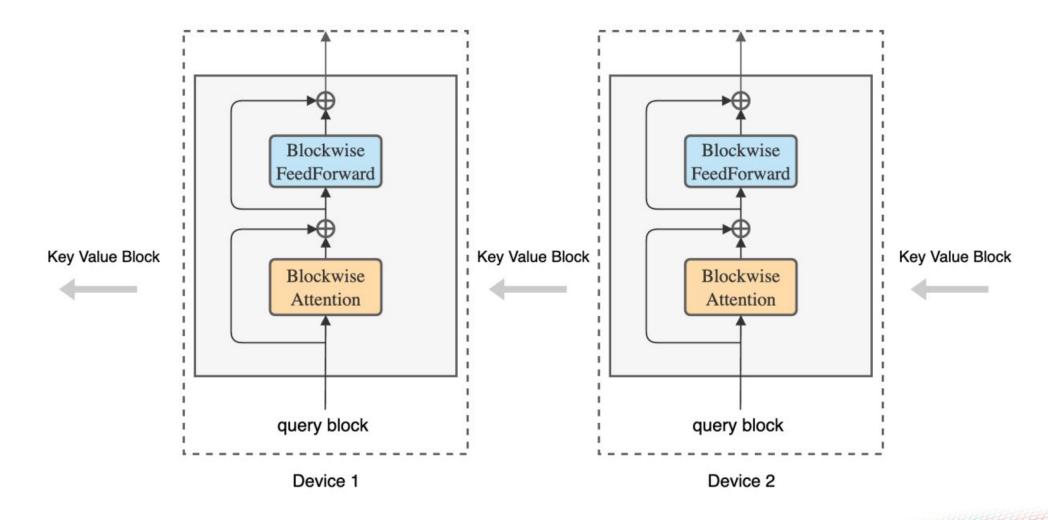
Main bottleneck: Attention mechanism

- 1 million context length == 1 TB GPU memory!
- Very realistic length in specific scenarios
 - DNA sequences
 - Autonomous Driving

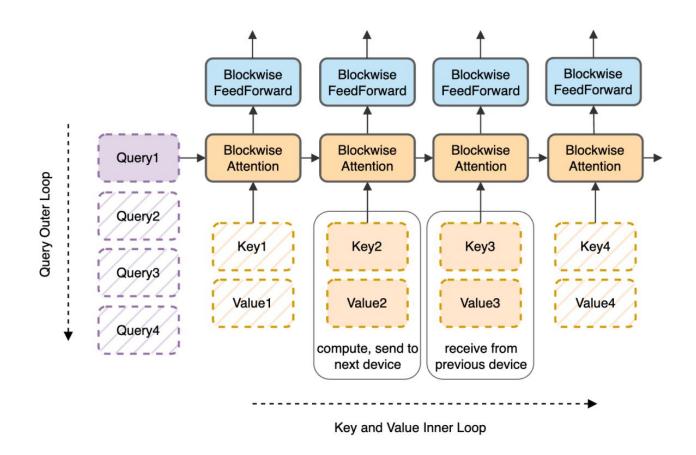
Many ways to approximate long-context attention

- Sparsity
- Recurrent
- Attention Sink

Compute Attention Block-Wise

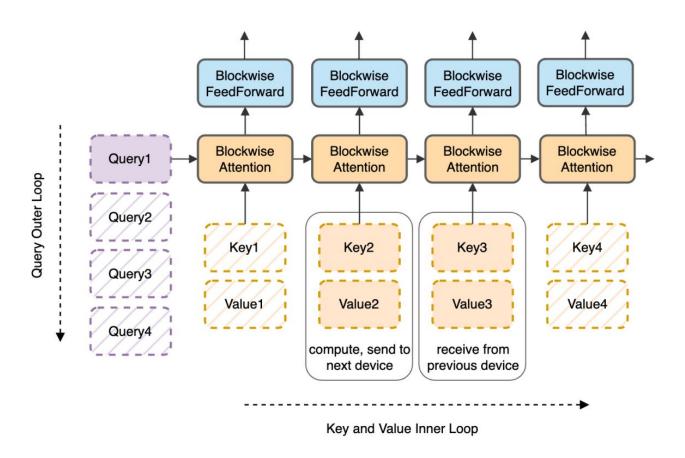


Form a communication ring to pass KV blocks around



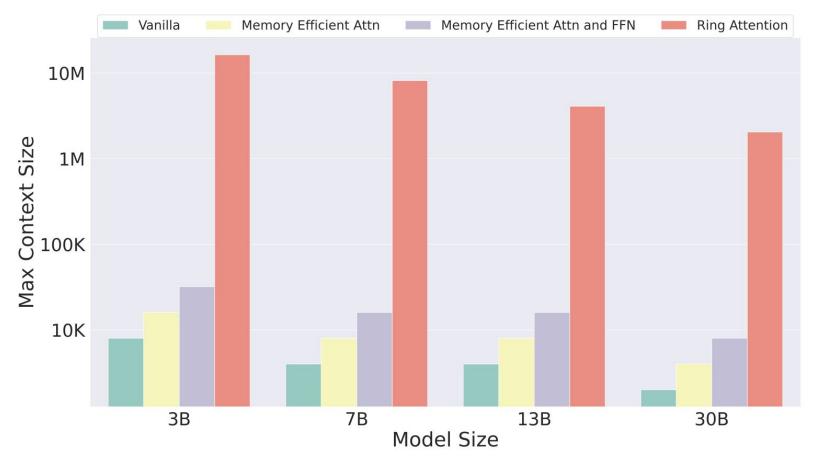
74

Form a communication ring to pass KV blocks around



No specific order required as attention is a set wise operation If communication < compute, then no extra latency

Long-context parallelism for inference efficiency



Max Context-Length in Large Scale Pretraining [14]

slido

Please download and install the Slido app on all computers you use

① Start presenting to display the audience questions on this slide.